Self-Similar Groups and Holomorphic Dynamics: Renormalization, Integrability, and Spectrum
نویسندگان
چکیده
In this paper, we explore the spectral measures of Laplacian on Schreier graphs for several self-similar groups (the Grigorchuk, Lamplighter, and Hanoi groups) from dynamical algebro-geometric viewpoints. For these graphs, classical Schur renormalization transformations act appropriate parameters as rational maps in two variables. We show that spectra question can be interpreted asymptotic distributions slices by a line iterated pullbacks certain algebraic curves under corresponding (leading us to notion current). follow up with criterion discreteness spectrum. case atomic spectrum, precise rate convergence finite-scale approximands limiting measure is given. three consideration, happen fibered over polynomials one variable. reveal nature integrability phenomenon.
منابع مشابه
Self-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملSymbolic Dynamics and Self-similar Groups
Self-similar groups and permutational bimodules are used to study combinatorics and symbolic dynamics of expanding self-coverings. We describe functors between the category of contracting self-similar groups and the category of expanding self-coverings (with appropriate morphisms). These functors transform some questions in dynamical systems to questions in algebra. As examples we show how some...
متن کاملKleinian Groups and Holomorphic Dynamics
In this work we explore some relations between iteration theory and theory of Kleinian groups. There is already work done in that direction. In the case of Fuchsian groups there is the result of Bowen and Series [1979] which guarantees the existence of a boundary map, orbit equivalent to the action of the Fuchsian group on the hyperbolic plane. We use this result in Sec. 3. Brooks and Matelski ...
متن کاملمروری بر کتاب self-similar groups
خودسانی یا فرکتالی بودن پدیده ای مهم در طبیعت است که در بسیاری از وجوه تمدن جدید انعکاس یافته است. این پدیده علاوه بر هنر، در فیزیک، شیمی علوم پزشکی و علوم کامپیوتر نیز رخ می نماید. خودسانی در مباحث مختلفی از ریاضیات و مدلسازی ریاضی از جمله دستگاههای دینامیکی و آشوب، فرآیندهای تصادفی و فیزیک آماری، توپولوژی و هندسه فرکتالی نیز ظاهر می شود.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arnold mathematical journal
سال: 2023
ISSN: ['2199-6806', '2199-6792']
DOI: https://doi.org/10.1007/s40598-022-00223-0